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ABSTRACT 
 

Localization and control are two key parts of autonomous driving. 
Accurate control relies on accurate positioning. Recently, the localization of 
autonomous vehicles based on the matching of Light Detection and Ranging 
(LiDAR) scan and High Definition (HD) map becomes the major solution. 
However, the matching can still possess meter-level positioning error in 
challenging areas with excessive dynamic vehicles or sparse features. 
Inaccurate positioning can result in obvious fluctuation in steering control of 
the vehicle subsequently, which is not acceptable for autonomous vehicles. 
In this paper, we propose to estimate the potential positioning uncertainty to 
further adaptively tune the parameters for the proportional-integral-derivative 
(PID) controller of vehicle steering. In this case, we can obtain a smoother 
control. Firstly, we generate the point cloud map of the tested area. Secondly, 
we correlate the uncertainty and optimal PID parameters using a fuzzy 
interference system. Finally, both the simulation and real experiments are 
conducted to validate the proposed method. The simulations show that the 
proposed adaptive PID controller is more resistant against unexpected 
positioning uncertainty and smoother control is obtained. 

 
Keywords: Fuzzy Logic, Control, Localization, Positioning Uncertainty, 

Adaptive PID 
 

I. INTRODUCTION 
 
As artificial intelligence technology has a significant 

development in these several years, autonomous driving 
technology will be the way people traveled in the next 
decades-years [1]. Generally, the autonomous driving 
technique is subdivided into perception [9,10], localization 
[2,3,5], planning [36], and control [3,4] in academia and 
industry. Control is the lowest level of autonomous driving 
system. It receives information from all other modules 
which making it can be easily affected by the inaccurate 
output of the upper level especially localization. What will 
happen if the vehicle gives trusts to the incorrect 
localization result (the red dotted in the middle of Fig.1) 
given by the sensor while it is driving normally on the road? 
The vehicle will have suddenly harsh steering to keep on 
the ‘right’ lane, but it is a very dangerous action if there is 
a car coming towards us as shown in Figure 1.  
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 This case may sometimes happen in real scenarios 
with inaccurate localization results, in this paper, we aim 
to optimize path tracking performance starting from the 
localization. To prove the proposed idea, we conducted 
several simulations and experiments in Hong Kong. For 
the localization part, a map-matching based method called 
normal distributions transform (NDT) matching is used. It 
matches the real-time scanned point cloud and pre-built 
HD map to localize vehicles. Biber and Strasser [11] first 
introduced NDT in which space is subdivided into 2D cells 
and in each cell. The environment is represented with 
normal distribution instead of the raw point cloud. Then 
Later Magnusson et al.extended the idea to the 3D domain 
[12,14]. For control, a number of novel methods [8,15,17] 
have been investigated in the previous studies including 
variant PID control methods [18,22,24-27,29,33,34] and 
Fuzzy control methods [19-21,23,28,30-32]. Although 
PID control is a simple, efficient, and widely used method, 
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it has limitations like controller parameters that cannot be 
changed dynamically. More studies combine PID with 
some novel artificial intelligence methods like fuzzy [31, 
32] and [27, 33, 34] to improve classical PID. In this paper, 
a new Fuzzy-PID controller is designed to overcome the 
limitations of the traditional one. But due to the 
environment change and feature distribution of point cloud 
[13, 42], there may be a significant positioning error [37, 
38, 39, 40], and this will cause an obvious control 

fluctuation. Previous methods in literatures [18, 22, 40] 
make improvement from path planning and control, they 
did not correlate control and localization together. But if 
localization has a shift error, ego-vehicle trajectory 
tracking performance will not be satisfactory even if the 
controller is perfect. Thus, a new self-tuning Fuzzy PID 
controller considering localization error is proposed for 
lateral steering control to smooth the control fluctuations 
caused by NDT matching error. 
 

 
Figure 1 Localization jump may result in abnormal steering 

 
 
 The rest of the paper is organized as following: In 

the second chapter, the methods of the NDT-matching 
method and vehicle dynamic model are introduced. A 
closed-loop lateral steering control system is designed 
based on the vehicle dynamic model [16], and the Fuzzy 
PID controller is designed correlating positioning error 
and PID parameters. In the chapter three, experiments are 
conducted to collect LiDAR positioning data in the deep 
urban area of Hong Kong. Several simulations are 
conducted in Simulink to present the performance 
improvement of the new controller. Finally, the concluding 
remarks are given, and future work is suggested. 

 
II. METHODS 

 
2.1 NDT-Matching Localization 

 NDT-matching is a method for the localization of the 
vehicle on the map. The key to this algorithm is to register 
real-time scan point cloud data with a pre-built point cloud 
map. First, we should have an HD point cloud map and it 
can be built from simultaneous localization and mapping 
(SLAM) technique [35]. We subdivide the map into 3D 
cells as shown in Figure 2. In each cell, we model the 
distribution of points as the normal distribution. The NDT-
matching method matches a LiDAR scan to the set of 
normal distribution rather than the raw point cloud. 

 
Figure 2 Point cloud distribution and matching 

between two sets of points 
 
 Then, the mean vectors and the covariance matrices 

are calculated in cells that contain at least five points. A 
probability that a point is located at position x is calculated, 
it can be formulated as the probability density function as 
follows [11]. 

 
𝑝𝑝(𝐱𝐱) = 1

c
exp (− (𝐱𝐱−𝛍𝛍)T𝚺𝚺−1(𝐱𝐱−𝛍𝛍)

2
)                  (1) 
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where 𝛍𝛍 and 𝚺𝚺 denotes the mean vector and covariance 
matrix of the reference points in the cell which 𝐱𝐱  lies. 
Here the reference points mean the points in the pre-built 
HD map. 𝐱𝐱 is a vector representing the position in space 
of real-time scan points by LiDAR. For 3D space, 𝐱𝐱 is a 
vector as follows: 

𝐱𝐱 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� 

c is a normalizing constant that can be tuned heuristically. 
The mean and convenience matrix are computed as [11]: 
 
𝛍𝛍 = 1

𝑚𝑚
∑ 𝐲𝐲𝑘𝑘𝑚𝑚
𝑘𝑘=1                                (2) 

Σ = 1
𝑚𝑚−1

∑ (𝐲𝐲𝑘𝑘 − 𝛍𝛍)(𝐲𝐲𝑘𝑘 − 𝛍𝛍)T𝑚𝑚
𝑘𝑘=1                 (3) 

 
where 𝐲𝐲𝑘𝑘=1,…,𝑚𝑚 are the position of reference scan points 
contained in the cell. 

 After we model the environment by a normal 
distribution, we register the scan. The purpose is to find 
the pose of the current scan that maximizes the likelihood 
that the points of the current scan lie on the reference scan. 
We encode the translation and rotation of estimates current 
pose as a six-dimensional vector 𝐩𝐩 =
�𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧 ,∅𝑥𝑥,∅𝑦𝑦 ,∅𝑧𝑧�

𝑇𝑇
 . Using the Euler sequence z-y-x, 

the 3D transformation function is [12]: 
 

𝑻𝑻(𝐩𝐩, 𝐱𝐱) = 𝐑𝐑𝐑𝐑 + 𝐭𝐭 = �
𝒄𝒄𝒚𝒚𝒄𝒄𝒛𝒛 −𝒄𝒄𝒚𝒚𝒔𝒔𝒛𝒛 𝒔𝒔𝒚𝒚

𝒄𝒄𝒙𝒙𝒔𝒔𝒛𝒛 + 𝒔𝒔𝒙𝒙𝒔𝒔𝒚𝒚𝒔𝒔𝒛𝒛 𝒄𝒄𝒙𝒙𝒄𝒄𝒛𝒛 − 𝒔𝒔𝒙𝒙𝒔𝒔𝒚𝒚𝒔𝒔𝒛𝒛 −𝒔𝒔𝒙𝒙𝒄𝒄𝒚𝒚
𝒔𝒔𝒙𝒙𝒔𝒔𝒛𝒛 − 𝒄𝒄𝒙𝒙𝒔𝒔𝒚𝒚𝒄𝒄𝒛𝒛 𝒄𝒄𝒙𝒙𝒔𝒔𝒚𝒚𝒔𝒔𝒛𝒛 + 𝒔𝒔𝒙𝒙𝒄𝒄𝒛𝒛 𝒄𝒄𝒙𝒙𝒄𝒄𝒚𝒚

� 𝐱𝐱 + �
𝒕𝒕𝒙𝒙
𝒕𝒕𝒚𝒚
𝒕𝒕𝒛𝒛
�                                    (4) 

 
where 
R is rotation matrix and t is translation matrix, 𝑐𝑐𝑖𝑖 =
cos∅𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑖𝑖 = sin∅𝑖𝑖.  

 A set of points detected by LiDAR 𝓧𝓧 = {𝐱𝐱1, … ,𝐱𝐱} 
are transformed by a pose p and a transformation function 
T(𝐩𝐩, 𝐱𝐱) . Then a probability score which is the sum of 
probability density function (PDF) of this set of points is 
defined: 

 
𝑠𝑠(𝑝𝑝) = −∑ 𝑝𝑝�𝐓𝐓(𝐩𝐩, 𝐱𝐱)�𝑚𝑚

𝑘𝑘=1                       (5) 
 
 The purpose is to minimize this score function to get 

an optimized six-dimensional vector 𝐩𝐩. In the algorithm, 
a p is initialized. Then Newton’s algorithm can be used to 
iteratively solve the equation 𝐇𝐇∆𝐩𝐩 = −𝐠𝐠, where H and g 
are the Hessian and gradient of s. The increment ∆𝐩𝐩 is 
added to the current estimate of the parameter in each 
iteration so that 𝐩𝐩 ← 𝐩𝐩 + ∆𝐩𝐩.  Once p is found, the 
position in the map can be obtained. 

 
2.2 Vehicle lateral controller design 

 The lateral controller design is based on the vehicle 
dynamic model. We consider the four-wheel vehicle as a 
two-degree bicycle model. The two degrees of freedom are 
vehicle lateral position y and vehicle yaw angle ψ. The 
lateral position is defined from the center of gravity to the 
lateral axis of the vehicle. The vehicle yaw angle is 
measured in the local frame concerning X-axis and the 
longitudinal velocity 𝑉𝑉𝑥𝑥  is measured at the center of 
gravity. Vehicle mass is m. 

 Figure 3 shows the lateral motion of the vehicle 
dynamic model in local frame XY, body frame XY is fixed 
on the center of the vehicle. 𝜓𝜓 and 𝜓𝜓𝑑𝑑𝑑𝑑𝑑𝑑 denote current 
heading angle and desired to head angle respectively. 
According to Newton’s second law, the motion along y-
axis can be described as: 

 
m𝑎𝑎𝑦𝑦 = 𝐹𝐹𝑦𝑦𝑦𝑦 + 𝐹𝐹𝑦𝑦𝑦𝑦                             (6) 

 
where ay is the inertial acceleration of the vehicle at the 
center of gravity of y-axis and 𝐹𝐹𝑦𝑦𝑦𝑦  and 𝐹𝐹𝑦𝑦𝑦𝑦  are the 
lateral tire forces of front and rear wheels respectively. 𝑎𝑎𝑦𝑦 

can be written as Equation 8. 𝑦̈𝑦 is acceleration along y-
axis and 𝑉𝑉𝑥𝑥𝜓̇𝜓 is the centripetal acceleration. 

 
𝑎𝑎𝑦𝑦 = 𝑦̈𝑦 + 𝑉𝑉𝑥𝑥𝜓̇𝜓                                (7) 

 
Substitute Equation 7 into 6, the equation can be 

written as: 
 

m�𝑦̈𝑦 + 𝜓̇𝜓𝑉𝑉𝑥𝑥� = 𝐹𝐹𝑦𝑦𝑦𝑦 + 𝐹𝐹𝑦𝑦𝑦𝑦                       (8) 
 
and the moment balance on the z-axis is: 
 

Iz𝜓̈𝜓 = lf𝐹𝐹𝑦𝑦𝑦𝑦 − lr𝐹𝐹𝑦𝑦𝑦𝑦                            (9) 
 

where Iz is the moment of inertia about z-axis and 𝜓̈𝜓 is 
angular acceleration. Equation 8 and 9 are the two 
fundamental equations representing the lateral motion of 
the vehicle. 

 

 
Figure 3 Lateral motion of the vehicle dynamic 

model described by the two-degree bicycle model 
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 Generally, the force is proportional to the slip-angle 
for a small slip-angle. But when slip-angle gets larger, the 
relationship becomes nonlinear. The slip angle of the front 
and the rear wheel is: 

  
𝛼𝛼𝑓𝑓 = 𝛿𝛿 − 𝜃𝜃𝑉𝑉𝑉𝑉                                (10) 

 
𝛼𝛼𝑟𝑟 = −𝜃𝜃𝑉𝑉𝑉𝑉                                  (11) 

 
where 𝜃𝜃𝑉𝑉𝑉𝑉  and 𝜃𝜃𝑉𝑉𝑉𝑉  are the angle between the velocity 
vector and vehicle longitudinal direction in Figure 4. δ is 
the front wheel angle. 
 The lateral force for both can be described as: 
 
𝐹𝐹𝑦𝑦𝑦𝑦 = 2Cαf�δ − 𝜃𝜃𝑉𝑉𝑉𝑉�                         (12) 
 
𝐹𝐹𝑦𝑦𝑦𝑦 = 2Cαr(−𝜃𝜃𝑉𝑉𝑉𝑉)                           (13) 
 
where the constant Cαf  and 𝐶𝐶αr  are called cornering 
stiffness of front and rear tires. The constant 2 means there 
are two front wheels and rear wheels. The unknown factors 
are 𝜃𝜃𝑉𝑉𝑉𝑉 and 𝜃𝜃𝑉𝑉𝑉𝑉. Assuming we have a relationship [16]: 
 

tan�𝜃𝜃𝑉𝑉𝑓𝑓� = 𝑉𝑉𝑦𝑦+lf𝜓̇𝜓
𝑉𝑉𝑥𝑥

                            (14) 
 

tan�𝜃𝜃𝑉𝑉𝑟𝑟� = 𝑉𝑉𝑦𝑦−lr𝜓̇𝜓
𝑉𝑉𝑥𝑥

                            (15) 
 

 
Figure 4 Description of tire slip angle in the 

 two-degree bicycle model 
 
If we use small approximations and using the notation 

𝑉𝑉𝑦𝑦 = 𝑦̇𝑦, we have 
 

𝜃𝜃𝑉𝑉𝑉𝑉 = 𝑦̇𝑦+lf𝜓̇𝜓
𝑉𝑉𝑥𝑥

                                 (16) 
 
𝜃𝜃𝑉𝑉𝑉𝑉 = 𝑦̇𝑦−lr𝜓̇𝜓

𝑉𝑉𝑥𝑥
                                 (17) 

 
 So far the Equation 8 and 9 of lateral vehicle 

dynamics can be represented by state-space model as 𝐗̇𝐗 =
𝐀𝐀𝐀𝐀 + 𝐁𝐁𝐁𝐁 as Equation 18. 

 

𝑑𝑑
𝑑𝑑𝑑𝑑
�

𝑦𝑦
𝑦̇𝑦
𝜓𝜓
𝜓̇𝜓

� =  

⎣
⎢
⎢
⎢
⎡

0 1
0 − 2Cαf+2Cαr

m𝑉𝑉𝑥𝑥

    0 0
    0 −𝑉𝑉𝑥𝑥 −

2lfCαf−2l𝑟𝑟Cαr
m𝑉𝑉𝑥𝑥

      0 0
      0 −2lfCαf−2lrCαr

𝑉𝑉𝑥𝑥Iz

0 1
0 − 2lf

2Cαf+2lr
2Cαr

𝑉𝑉𝑥𝑥Iz ⎦
⎥
⎥
⎥
⎤

�

𝑦𝑦
𝑦̇𝑦
𝜓𝜓
𝜓̇𝜓

� +

⎩
⎪
⎨

⎪
⎧

0
2𝐶𝐶𝛼𝛼𝛼𝛼
𝑚𝑚
0

2𝑙𝑙𝑓𝑓𝐶𝐶𝛼𝛼𝛼𝛼
𝐼𝐼𝑧𝑧 ⎭

⎪
⎬

⎪
⎫

𝛿𝛿                         (18) 

 
column vector [𝑦𝑦 𝑦̇𝑦 𝜓𝜓 𝜓̇𝜓] is a state vector in which y is 
lateral position and 𝜓𝜓  is heading angle, 𝛿𝛿  is input as 
wheel angle. The 4-by-4 matrix here is the dynamics 
matrix in which Cαf  and Cαr  are cornering stiffness, 
Izis the moment of inertia, 𝑉𝑉𝑥𝑥 is longitudinal velocity, lf 
and lr  are the distance from the front wheel and rear 
wheel to the center of gravity respectively, m is mass. 4-
by-1 matrix is the input matrix here. 

 Based on the derivation mentioned above, the 
system is designed in Simulink as shown in Figure 5. The 
vehicle dynamic module is designed based on the model 

described in Equation (18), the velocity and steering are 
fed into it and outputs yaw rate, longitudinal velocity, and 
lateral velocity to the next module. The steering controller 
combines that upstream information with a given specific 
road curvature to calculate steering error, which is the 
offset between ego-car’s heading and desired heading 
related to the road. Then the key to the system is the Fuzzy 
PID, which calculates a steering output given a steering 
error with the controller parameter determined by 
probability score and its change rate of localization 
module. 
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Figure 5 Design of the proposed lateral control system to mitigate the effect  

of the NDT localization uncertainty. 
 
 

 The steering controller calculates a combined 
steering error which is the sum of heading offset and 
lateral displacement offset of ego-car related to current 
road curvature, equations are shown in Equation 19 and 20.  

 
𝑒𝑒1̇ = 𝑉𝑉𝑥𝑥𝑒𝑒2 + 𝑉𝑉𝑦𝑦                               (19) 

 
𝑒𝑒2 = 𝜓𝜓 − 𝜓𝜓𝑑𝑑𝑑𝑑𝑑𝑑                              (20) 

 
𝜓𝜓𝑑𝑑𝑑𝑑𝑑𝑑 is the desired yaw rate given by 𝑉𝑉𝑥𝑥

R
 which R is the 

radius for the road curvature. 𝑒𝑒1  and 𝑒𝑒2  are lateral 
displacement error and yaw angle error, respectively. 

 In the Fuzzy PID module, there are two submodules; 
One is the Fuzzy Logic module correlating NDT 
localization and PID controller, another one is a classical 
PID closed-loop control system. The control function in 
the time domain could be expressed mathematically as: 

 
𝑢𝑢(𝑡𝑡) = 𝐾𝐾p𝑒𝑒 + 𝐾𝐾d

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

                           (21) 
 

where 𝐾𝐾p, 𝐾𝐾d contribute the proportional, and derivative 
terms respectively. e is the combined steering error and u 
is the control variable which is wheel steering. Some 
parameters of vehicle dynamics are shown in Table 1. 

 
 

Table1 Vehicle dynamic parameters used in this paper. 
 

Vehicle parameter Value 

vehicle mass (kg) 1575 

vehicle yaw moment inertia (kg*m2) 2875 

longitudinal distance from the center of mass to the front axle (m) 1.2 

longitudinal distance from the center of mass to rear axle (m) 1.6 

front tire corner stiffness Cf (N/rad) 19000 

rear tire corner stiffness Cr (N/rad) 33000 

 
2.3 Fuzzy system design 

 The Fuzzy PID controller is designed to tune 
controller parameters adaptively and its architecture is 
shown in Figure 6. Probability score s of NDT-matching 

calculated in Equation 6 and its change rate 𝑑𝑑𝑑𝑑 = ∆𝑃𝑃
∆𝑡𝑡

 are 
set as inputs of fuzzy system, 𝐾𝐾p  and 𝐾𝐾d  are set as 
outputs of it.  
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Figure 6 Architecture of the proposed fuzzy logic: 2 inputs and 2 outputs 
 
 
  The range of probability score of 2.0m grid 

size is [0, 10] and the range of probability score change 
rate is [-5, 5]. In our simulation, the range of 𝐾𝐾p, 𝐾𝐾d are 
decided as [0, 10] and [0, 0.1] respectively and if they are 
out of this range, the system will be unstable. For each 

input and output, 7 triangular membership functions are 
used to describe them mathematically. The meaning of 
linguistic variables of the membership function is shown 
in Table 2. 

 
 

Table 2 Definition of the membership functions of fuzzy system 
 

Membership function Abbreviated Membership function Abbreviated 

Extremely Small ES Negative Large NL 

Very Small VS Negative Medium NM 

Small S Negative Small NS 

Medium M Zero ZE 

Large L Positively Small PS 

Very Large VL Positively Medium PM 

Extremely Large EL Positively Large PL 

The main process of fuzzy rules design is shown as 
Figure 7. Once NDT localization has a jump, the 
probability score P calculated in Equation (5) will become 
a smaller value and its change rate dP will get larger 
normally as P changes. Via fuzzy rules, we want to 
decrease Kp value because we want to minimize 

proportional response of steering output. And we also want 
to increase Kd value to increase dampening effect of rapid 
change. After Kp and Kd change, control output steering 
wheel angle will get smaller so that we can smooth lateral 
tracking error. 
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Figure 7 Flowchart of design logic of fuzzy rules 
 
 

Table 3 Fuzzy rule table for output 𝐾𝐾p 
 

P/dP NL NM NS ZE PS PM PL 

ES ES ES ES ES ES ES ES 

VS ES ES ES ES ES ES ES 

S ES ES ES ES ES ES ES 

M ES ES ES ES ES ES ES 

L EL EL EL EL EL EL EL 

VL EL EL EL EL EL EL EL 

EL EL EL EL EL EL EL EL 
 
 

Table 4 Fuzzy rule table for output 𝐾𝐾d 
 

P/dP NL NM NS ZE PS PM PL 

ES L VS ES ES ES VS L 

VS VL M ES ES ES M VL 

S EL L ES ES ES L EL 

M EL VL ES ES ES VL EL 

L EL EL EL EL EL EL EL 

VL EL EL EL EL EL EL EL 

EL EL EL EL EL EL EL EL 
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III. EXPERIMENT RESULTS AND DISCUSSIONS 

 
3.1 Experiment 

 To simulate the Fuzzy controller in Simulink and 
evaluate its performance, an experiment was conducted in 
Whampoa, a dense urban area of Hong Kong. Data is 

collected by our data collection platform and sensor kit is 
mounted on the top of the car like shown in Figure 8. The 
point cloud data is collected by Velodyne 32E LiDAR and 
ground truth of trajectory is provided by Novatel SPAN-
CPT, which is dual-frequency GNSS RTK integrated with 
fiber optics gyroscope. 

 
Figure 8 Data collection platform and sensors: including Fisheye camera, 

Velodyne 32E LiDAR, IMU and Novatel SPAN-CPT 
 

 

 
Figure 9 (Left) Experiment area (Right) HD map generated by the LiDAR SLAM. 

 
 The point cloud map made by Velodyne 32E LiDAR 
and the experiment area from Google Earth can be seen in 
Figure 9. After collecting the data, the self-localization is 
performed based on NDT-matching with a 2m grid size. 
The process of NDT-matching is demonstrated in Figure 
10. Then the localization error of NDT-matching is 
obtained by comparing it with the positioning results of 

SPAN-CPT. The probability score of NDT-matching 
calculated in Equation (5) is also obtained. Their 
correlation is shown in Figure 11. The probability score 
and positioning error have a negative correlation of -0.83 
correlation coefficient. The two biggest errors appear in 
around 80 seconds and 200 seconds. 
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Figure 10. NDT-matching process 
 
 

 
 

Figure 11 NDT-matching localization error and probability score of the LiDAR matching 
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3.2 Simulation 

 In this section, three simulations are conducted in 
Simulink to verify the performance of new design 
controller. We simulate ego car is driving on a smooth road 
of free limit area with 1/750 curvature, and for safety 
reason the longitudinal velocity is set as 1m/s. In the first 
simulation, the initial position of the vehicle is (0,0) in the  

local frame and the initial yaw angle is 0 radius. The 𝐾𝐾p 
and 𝐾𝐾d  of the PID controller are set as 10 and 0.1 
theoretically and experimentally so that ego car can drive 
a smooth trajectory without oscillation. The trajectory is 
shown in Fig 12 during simulation time of 252 seconds, it 
will be used as a reference in the following simulations. 

 

 
Figure 12 2D trajectory of convention PID controller 

 
 

 Above simulation is under perfect condition. But in 
real scenario, there are errors introduced by the external 
environment. The errors consist of two sources; one is 
control error; one is sensor error. Control error comes from 
the imperfect modelling due to the changes of road surface 
and vehicle hardware. Sensor error comes from the 
positioning error of sensors. To simulate sensor error, the 
NDT matching positioning error of the experiment is 
introduced into a simulation system manually. The second 
simulation results after introducing NDT-matching error is 
shown in Figure 13, it has a fluctuation since positioning 
error influences control stability, especially at around 80s 
and 200s. These two huge errors eventually cause an offset 

of the trajectory. We can see that the vehicle almost has a 
U-turn in the 80s because of the “wrong” control 
commands and the offset of trajectory increases about 5m 
from 200s. It is dangerous when a driverless car is driving 
like this, it may bring damage to the traffic and people. 

To smooth big errors, the third simulation using 
Fuzzy PID controller which designed in section 2.3 is 
conducted in the same scenario. Trajectory result is shown 
in Figure 14, the blue line represents conventional PID 
controller and the orange line represents the Fuzzy PID 
controller. We can see that Fuzzy controller corrects the 
trajectory at 80s and 200s, it is smoother than the 
conventional one. It can mostly follow the ground truth. 
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Figure 13 The 2D trajectory of convention PID controller and ground truth 

after introducing NDT-matching error 
 

 
Figure 14 The 2D trajectory of conventional PID controller, Fuzzy PID controller 

and ground truth changing with simulation time 
 

 Figure 15 compares the correlation between 
different variables in the simulation including lateral 
displacement error, probability score, and its change rate, 
𝐾𝐾p and 𝐾𝐾d, steering angle, and yaw angle. In the A-B and 
C-D periods, localization shows high accuracy. However, 
in B-C and E-F high error appeared. These errors come 
from low probability score and high probability score 

change rate which can be seen from the second and third 
lines. 𝐾𝐾p  and 𝐾𝐾d  are highly related to the probability 
score, they have a significant decrease during period B-C 
and E-F. The steering angle and yaw angle of the 
conventional PID controller and Fuzzy PID controller are 
almost the same during period A-B and C-E, but they 
significantly decrease within B-C and E-F. 
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Figure 15 Correlation between the LiDAR NDT error, probability score, 𝐾𝐾p, 𝐾𝐾d  

and the controlled steering angle and resulted yaw angle. 
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 First block of figure 16 denotes how the Fuzzy 

controller improves trajectory tracking performance. Top 
three lines represent X position in the local frame and three 
lines at the bottom represent Y position in the local frame. 
Zoom in four orange areas 1-4, we can see that the 
conventional controller has approximately 0.5m error for 

both X and Y position at the time around the 80s, however, 
the fuzzy controller has almost the same results as ground 
truth. At the time of 200s, the convention controller has 
about 1m error, but the fuzzy controller has a much better 
result. The controller has better performance on the X 
position than Y. 
 

 
 

Figure 16 X and Y position change of conventional PID controller, Fuzzy PID controller 
and ground truth changing with simulation time 

 

 
Figure 17 The 2D Trajectory error of a conventional PID controller and Fuzzy PID controller  

changing with simulation time 
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Table 5 Trajectory tracking performance of the 

conventional PID controller and Fuzzy PID 
controller 

 

Error 
Controller 

Mean 
(m) 

Std 
(m) 

Max 
(m) 

Conventional PID 2.42 3.07 10.38 

Fuzzy PID 1.09 1.22 4.48 

 
 Figure 21 shows the 2D trajectory of three different 

controllers. We can see that the vehicle trajectory of the 
fuzzy controller is not affected seriously by positioning 
error in the 80s. It does not make U-turn like a 
conventional controller and smooth the error well. After 
200s, although the trajectory has offset with the desired 
one, it still has improvement and smoother. The trajectory 
error of two controllers is compared numerically in Figure 
22 and Table 4. They are the same values before the 80s, 
and it has a significant decrease after the 80s especially 
after the 200s. The fuzzy controller reduces mean error and 
standard deviation of trajectory error from 2.42m to 1m 
and from 3.07m to 1.22m respectively. 

 
IV. CONCLUSIONS AND FUTURE WORK  
 
In this work, we focused on the correlation between 

localization and lateral control of the autonomous vehicles. 
For localization, the NDT-matching method is performed 
to localize the vehicle’s position by aligning real-time 
point cloud with point cloud map. We use the probability 
score to predict NDT-matching positioning error. Then the 
vehicle dynamic model is introduced, and we design a PID 
lateral controller based on it. The controller adjusts the 
steering angle of the front wheel to follow the desired 
trajectory. But in challenging scenarios, erroneous 
positioning can eventually result in steering fluctuations. 
To smooth these fluctuations, a fuzzy PID controller is 
designed, it adaptively adjusts the PD gain parameters 
based on the probability score and its change rate of NDT-
matching. 

 we collected point cloud data from LiDAR in an 
urban area at Hong Kong, and the point cloud map is 
generated. Then NDT-matching method is performed to 
obtain positioning error by comparing them with SPAN-
CPT. We have found that NDT-matching positioning error 
has a high correlation with its probability score. 

 To evaluate the performance of the proposed fuzzy 
PID controller, several simulations have conducted in 
Simulink. The vehicle follows the same path with fuzzy 
PID controller, it has a significant improvement. The mean 
error of trajectory tracking has been decreased by more 
than 1 meter and the maximum error reduces from 10 
meters to 4 meters. 

 However, the presented method still has some 
drawback: 1) Sometimes the correlation between 

probability score and localization error is weak; 2) the 
fuzzy rules are simple that may cannot cover all cases. 3) 
the accuracy of lateral control using PID is limited. In the 
future, we will find other factors correlating well with 
localization error in different scenarios and optimize fuzzy 
rules. Apart from this, we will apply this method on more 
different controller to solve control instability. 
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